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Abstract
Genome assembly can be challenging for species that are characterized by high 
amounts of polymorphism, heterozygosity, and large effective population sizes. High 
levels of heterozygosity can result in genome mis- assemblies and a larger than ex-
pected genome size due to the haplotig versions of a single locus being assembled as 
separate loci. Here, we describe the first chromosome- level genome for the eastern 
oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly 
has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. 
The genome assembly for the eastern oyster is a critical resource for foundational 
research into molluscan adaptation to a changing environment and for selective 
breeding for the aquaculture industry. Subsequent resequencing data suggested the 
presence of haplotigs in the original assembly, and we developed a post hoc method to 
break up chimeric contigs and mask haplotigs in published heterozygous genomes and 
evaluated improvements to the accuracy of downstream analysis. Masking haplotigs 
had a large impact on SNP discovery and estimates of nucleotide diversity and had 
more subtle and nuanced effects on estimates of heterozygosity, population structure 
analysis, and outlier detection. We show that haplotig masking can be a powerful tool 
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1  |  INTRODUC TION

A highly contiguous and annotated genome assembly can be an 
invaluable tool for population genomic inference (Ellegren, 2014) 
enabling both genome- scale and reduced representation meth-
ods for sequencing populations (Ekblom & Galindo, 2010; Fonseca 
et al., 2016; Matz, 2017). However, even as the cost of second-  and 
third- generation sequencing continues to drop (van Dijk et al., 2014), 
many challenges remain for assembling references for non- model 
organisms (Roach et al., 2018; Solares et al., 2021). One of the great-
est hurdles to accurate genome assembly is heterozygosity (Kajitani 
et al., 2014; Safonova et al., 2015; Vinson et al., 2005), a hallmark 
of many wild plant and animal species, including most insects and 
marine invertebrates.

One assembly artefact created by heterozygosity is the “hap-
lotig.” Haplotigs arise when algorithms misinterpret divergent allelic 
haplotypes in heterozygous genomic regions and assemble them as 
separate (duplicated) loci, with both copies incorporated into the 
primary assembly (Roach et al., 2018). For a genomic region split 
into haplotigs in the assembled reference, read mapping software 
will randomly chose which haplotig to map a read to (i.e., half of the 
reads map to one haplotig and the other half of the reads map to the 
other haplotig). This issue with read mapping means that haplotigs 
could present a major problem for population genomic analyses of 
any highly polymorphic species. The splitting of a diplotig into hap-
lotigs might limit SNP discovery and reduce estimates of genetic di-
versity, as allelic reads could potentially map to different parts of the 
assembly, reducing coverage (needed for genotyping), allelic repre-
sentation within reads for a specific locus, and at the worst extreme 
producing two homozygous genotypes for what in reality would be 
a single heterozygous locus. If the haplotigs were associated with 
populations (one allele more common in one subpopulation than 
another), this could introduce errors into statistics like population 
estimates of observed and expected heterozygosity as well as FST. 
Haplotigs could also affect estimates of copy number variation and 
other structural variants by inherently making extra copies of loci 
within the genome. Moreover, haplotig detection is still a develop-
ing field in bioinformatics with most software published within the 
last 4 years (Pryszcz & Gabaldón, 2016; Roach et al., 2018; Solares 
et al., 2021). As a result, many published genome assemblies likely 
have some amount of haplotigs incorporated into the assembly, and 
the extent to which haplotig artefacts impact population genomic 
analysis has not been well studied.

The eastern oyster, Crassostrea virginica, is an excellent spe-
cies to understand the impacts of haplotigs on population genomic 

inference. Eastern oysters create three- dimensional reef structures 
that provide multiple ecosystem services such as habitat for near-
shore fishes, water quality improvements, and protection from 
storm waves and erosion; the value of oyster reef ecosystem ser-
vices can be as much as $99,000 per hectare per year (Grabowski 
et al., 2012). Additionally, the eastern oyster supports a commercial 
fishing and aquaculture industry valued at $100 million with several 
regional selective breeding programmes (Allen et al., 2021; Gómez- 
Chiarri et al., 2015; Guo, 2021). Eastern oysters are highly fecund, 
protandrous hermaphrodites with external fertilization and a plank-
tonic larval stage (Thompson et al., 1996), are distributed from New 
Brunswick, Canada, to Yucatan, Mexico, and are genetically diverse 
(Buroker, 1983; Hoover & Gaffney, 2005; Karl & Avise, 1992; Reeb & 
Avise, 1990; Varney et al., 2009).

The genome assembly of the eastern oyster is scaffolded onto 
the 10 known chromosomes for this species and was first released 
on NCBI in 2017. Initial results from a resequencing project indi-
cated that there may be haplotig sequences in the genome, so we 
developed a protocol to infer haplotigs within the assembly. In this 
paper, we describe the assembly and annotation of the eastern oys-
ter genome. We then describe a post hoc protocol to detect and 
mask haplotigs in a genome assembly and apply that to the eastern 
oyster genome. Lastly, we compare the haplotig- masked genome 
to the original genome to understand the effects of haplotigs on 
read mapping, SNP discovery, and estimates of common statistics 
in population- level inference. We show that haplotig masking can be 
a powerful tool for improving population genomic analysis without 
having to reassemble a genome.

2  |  MATERIAL S AND METHODS

2.1  |  Original genome sequencing and assembly

2.1.1  |  Sequenced individual

An inbred gynogenetic (with DNA from the mother only) oyster 
(RU13XGHG1#28) was used for whole- genome sequencing to 
reduce problems associated with high polymorphism. Inbred gy-
nogenetic oysters were produced by meiotic gynogenesis (Guo 
et al., 1993) from an oyster line (NEH®) selectively bred for 12 gen-
erations. Samples of tissue from parents and progeny were flash 
frozen in liquid nitrogen and stored at −80°C. Levels of inbreeding 
in the gynogenetic progeny as compared to the parents and wild 
oysters from Delaware Bay were determined using a panel of 15 

for improving genomic inference, and we present an open, reproducible resource for 
the masking of haplotigs in any published genome.
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microsatellites (Wang et al., 2010), and a confirmed inbred female 
oyster from the gynogenetic progeny was selected for sequencing.

2.1.2  |  Sequencing and assembly

High- quality genomic DNA from the gynogenetic individual was iso-
lated using the Trizol method from a pool of two tissues (gill and 
mantle), and DNA quality was assessed through Nanodrop, Qubit, 
and TapeStation analysis. All sequences were generated on a PacBio 
RSII instrument with P6- C4 sequencing chemistry. De novo assem-
bly used PacBio subreads (>8 kb) with the standard FALCON v0.5.0 
(Chin et al., 2013) method (parameter setting: max_diff 120, max_
cov 120, min_cov 3, min_seed_length 9Kb), and assembled contigs 
were error corrected with Quiver (Chin et al., 2013). Error- corrected 
haplotype- specific contigs were first linked together into scaffolds 
using SSPACE- LongRead (Boetzer & Pirovano, 2014). Scaffolds were 
then linked together into megascaffolds using a high- order chroma-
tin contact map (HiC) between chromosomes (Bickhart et al., 2017). 
Adductor muscle tissue from a reference- related individual was used 
to generate HiC libraries at Phase Genomics (Seattle, WA) for this 
purpose. The libraries were sequenced using paired- end sequencing 
on a HiSeq X Illumina instrument, and reads (100 bp) were aligned to 
the error- corrected contigs within scaffolds using bwa V0.7.16 (Li & 
Durbin, 2010) with strict parameters (- N 0; no hits from discordant 
pairs) to prevent mismatches and non- specific alignments. Only read 
pairs that aligned to different contigs were used for scaffolding. The 
Proximo Hi- C pipeline performed chromosome clustering and con-
tig orientation as described previously (Bickhart et al., 2017). At this 
stage, all pseudochromosome sequences were polished with Pilon 
(Walker et al., 2014) using ~40× coverage of Illumina data from the 
same reference individual.

2.2  |  Original assembly curation

2.2.1  |  Annotation

To develop transcript resources, we extracted total RNA from mus-
cle, digestive, gill, and mantle tissues, and pools of larvae using a 
RNeasy kit (Qiagen) according to the manufacturers' protocol. Total 
RNA for quality was assessed on the Agilent Fragment Analyzer and 
then enriched for poly(A) + RNA using the MicroPolyA Purist kit 
(Ambion). We used ScripSeq (Epicentre, Madison, WI) to generate 
strand- specific cDNA that was sequenced on the Illumina Hiseq4000 
platform as 100 base paired- end reads (insert size of 400 bp). All 
RNAseq tissue data (150 million reads) were assembled with trinity 
version 2.1.0 (Grabherr et al., 2011). The open reading frames (ORFs) 
were extracted from the complete transcriptome assembly (Trinity.
fasta) using TransDecoder and LongOrfs modules (https://github.
com/Trans Decod er/Trans Decod er/relea ses/tag/Trans Decod er- 
v5.5.0). The 819 Mb primary de novo assembly was used as input to 
align Trinity assembled transcripts using blat (Bhagwat et al., 2012; 

James Kent, 2002). Top hits were parsed with internal scripts by 
requiring there only be one best hit (- total_hits 1) with subsequent 
scaffolds showing multiple transcript alignments manually inspected 
for possible redundancy using assembly self- alignment data.

For assembly self- alignment, we first fragmented the assem-
bly in silico into 1 kbp segments and aligned against itself using 
blastz (Schwartz et al., 2003). These alignments are scored against 
a repeat masked reference sequence using repeatmodeler (http://
www.repea tmask er.org/Repea tModeler) output that is suitable for 
RepeatMasker application (Chen, 2004). After several alignment cri-
teria were evaluated, we used 97% identity and 80% coverage with 
each scaffold to remove redundant contigs.

For gene completeness, all assembled transcripts were aligned 
against the pseudochromosomes using blat requiring there only be 
one best hit (- total_hits 1) and parsed by varied alignment length 
thresholds of 95%, 75%, and 25% at a 90% sequence identity cut-
off. Cumulative representation was summed for all transcript varied 
length alignments. The NCBI pipeline used for the gene annotation of 
C. virginica genome followed methods detailed in Pruitt et al. (2012). 
Lastly, a genetic linkage map with 4006 RAD- seq markers was con-
structed with data from 115 progeny from an F2 family (He, 2012) 
using joinmap 4.0 (Van Ooijen, 2006) and used to assess the integ-
rity of the assembly. Accuracy of sequence placement was assessed 
using genetic marker sequence alignments against the C. virginica 
linkage map as defined by Chromonomer (Catchen et al., 2020) or-
dering that also uses the genetic linkage map as input.

2.3  |  Haplotig detection and masking

The original curated and annotated assembly (described above) was 
deposited in NCBI (RefSeq Accession: 4991078) in September 2017 
for widespread usage by several stakeholders. Afterward, a rese-
quencing project began and during preliminary data analysis in late 
2019, a pattern in coverage across the genome began to indicate 
that there may be haplotig sequence contained within the genome 
assembly. To investigate, the genomic Illumina reads from the origi-
nal genome individual (used for genome polishing) were mapped to 
the original assembly using bwa (Li & Durbin, 2010). Coverage was 
averaged across 10 kb windows using samtools (Li et al., 2009) and 
plotted as a histogram using R (R Development Core Team, 2008). 
The bimodal distribution of coverage with a peak at expected cover-
age (diploid; 64×) and half the expected coverage (haploid; 32×) con-
firmed the presence of haplotigs in the original assembly. Because 
the genome had already been publicly released, and widely used, 
we chose to mask haplotigs while preserving the original genome 
coordinates, enhancing compatibility with previous and ongoing 
research.

Files, scripts, and an RMarkdown file to reproduce the entire hap-
lotig detection and masking process can be found at https://github.
com/The- Easte rn- Oyste r- Genom e- Proje ct/2023_Easte rn_Oyster_
Haplo tig_Masked_Genom e/tree/main/Haplo tig_Masking (with an 
archived release of the code for this submission accessible at https://
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doi.org/10.5281/zenodo.7799622). To detect haplotigs, the scaf-
folded assembly was broken into the original set of assembled contigs 
by converting the NCBI annotation file (GCF_002022765.2_C_vir-
ginica- 3.0_genomic_gaps.txt.gz) to a bed file and using bedtools 
(Quinlan & Hall, 2010) to “subtract” gaps from the fasta file, gener-
ating a set of 669 contigs. To test for chimeric contigs, the genomic 
Illumina reads from the original genome individual were then mapped 
to these 669 contigs using minimap2 (Li, 2018, 2021) and processed 
with samtools (Li et al., 2009) and picard Tools (Broad Institute, 2016) 
to remove poorly mapping reads and optical and PCR duplicates. 
BEDTools (Quinlan & Hall, 2010) was then used to calculate mean 
coverage across sliding 100 kb windows with 50 kb of overlap.

We used coverage windows to break up chimeric contigs by 
looking for contigs that had large windows (>150 kb) that shifted 
from diploid coverage levels to haploid coverage levels. We used 
BEDTools (Quinlan & Hall, 2010) to calculate these interval changes 
to break potentially chimeric contigs into multiple smaller contigs, 
preserving all basepairs. The coverage across sliding windows was 
used to split potentially chimeric contigs by initially dividing win-
dows into high (>40 mean coverage: all- high- intervals) and low (<40 
mean coverage: all- low- intervals) with remaining windows merged. 
A coverage level of 40 was chosen based on the distribution of cov-
erage which had a bimodal peak of 32 and 64; 40 represented the 
tail end of the “haplotig” peak. Remaining windows smaller than 
150 kb were also extracted from each of the two coverage sets, as 
potential chimeras.

Our logic for breaking contigs focused on length and coverage 
of the windows. The all- high- intervals likely are all diplotigs given 
the coverage, and the low- coverage windows smaller than 150 kb 
are likely to be haplotigs that are nested within chimeric contigs. We 
combined this interval set, representing high- confidence diplotigs 
and high- confidence chimeric haplotigs (Subset 1). The other two 
interval sets, the low- coverage intervals larger than 150 kb and the 
high- coverage intervals smaller than 150 kb, are merged, represent-
ing high- confidence haplotig intervals and high- confidence diplotigs 
that are nested within chimeric contigs (Subset 2). Subtracting the 
high- confidence diplotig intervals and the likely nested haplotig 
intervals (Subset 1) from the high- confidence haplotigs and likely 
chimeric diplotigs (Subset 2) breaks any potential chimeras. The se-
quence in the broken contigs is recovered by extracting sequences 
from the original reference using Subset 1 and the result of Subset 
1 − Subset 2, producing a set of contigs broken at chimeric points.

Minimap2 (Li, 2018, 2021) was then used to map the Illumina 
reads to the broken contigs, and samtools (Li et al., 2009) con-
verted alignments to a BAM file. The program purge haplotigs (Roach 
et al., 2018) was used to then detect and remove haplotigs from the 
manual reference contigs. The “coverage” step of the program was 
run with 10 as the “low cutoff” (- l), 56 as the “midpoint” (- m), and 
120 as the “high cutoff” (- h). The “purge” and “clip” steps were run 
with default parameters. The mitochondrial genome was flagged 
in the initial purge step as an artefact due to its high coverage. It 
was searched for and removed from the list of artefact sequences. 
We then combined the haplotigs from the clip step and the initial 

artefacts to create a “total haplotig” file. We mapped this file back to 
the original reference, using minimap2, to identify haplotigs, and used 
bedtools (Quinlan & Hall, 2010) to convert the mappings to a haplotig 
bed file. This haplotig bed file was used to mask the reference ge-
nome using bedtools to produce the final haplotig- masked genome.

2.4  |  Genome comparison

All code, scripts, and files needed to reproduce the comparative 
analysis can be found in the https://github.com/The- Easte rn- 
Oyste r- Genom e- Proje ct/2023_Easte rn_Oyster_Haplo tig_Masked_
Genome repository in the folder “Comparative_Analysis.”

2.4.1  |  Coverage

To assess the impacts of haplotig masking, Illumina reads from the 
original genome individual were mapped to both genome versions. 
A modified version of the ddocent pipeline (Puritz et al., 2014) was 
used to run bwa (Li & Durbin, 2010) to map reads to the genome. 
Duplicate reads were identified with the “MarkDuplicates” function 
of picard (Institute, 2016). samtools (Li et al., 2009) was then used to 
create individual bam files based on a set of filtering criteria: “total 
reads” –  bam file contains all non- duplicate primary alignments, 
“multimapping reads” –  bam file contains only reads that mapped to 
more than one location in the genome, and “filtered reads” –  bam file 
contains only mapping with a quality score above 10 and no hard or 
soft clipping above 80 bp. BEDTools (Quinlan & Hall, 2010) was then 
used to calculate the average coverage over 10 kb windows across 
the genome. Coverage was plotted as a histogram using the ggplot2 
package (Wickham, 2016) in R (R Development Core Team, 2008). 
Coverage was also plotted along individual chromosomes.

2.4.2  |  Completeness of genome

Genome completeness was assessed for both versions using 
Benchmarking Universal Single- Copy Orthologs (busco) version 
5.4.3 (Seppey et al., 2019; Simão et al., 2015) and the mollusca or-
tholog database version 10, containing 5295 single- copy orthologs. 
For comparison, the two newest chromosome- level assemblies for 
Crassostrea gigas were downloaded from NCBI (GCA_011032805.1, 
GCA_902806645.1) and assessed using the same busco version and 
database.

2.5  |  Population- level inference

2.5.1  |  Resequencing data

Ninety adult wild and farmed eastern oysters were collected in the 
fall of 2017 from multiple water bodies across the United States 

https://doi.org/10.5281/zenodo.7799622
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of America including the Gulf of Maine, the Delaware Bay, the 
Chesapeake Bay, and the northern Gulf of Mexico near Louisiana. 
Samples were also included from multiple selected oyster lines for a 
total of eight wild localities and five selected lines. Individuals were 
sequenced on an Illumina HiSeq X PE 150 bp platform to 15– 20× 
coverage. Twelve samples were included in sequencing and variant 
calling from known inbred experimental lines and populations as 
part of a different research project. These samples were included 
for mapping statistics and SNP counts, but were not used for any 
population- level analyses, leaving a total of 78 individuals. Full de-
tails on sample source, and collection, processing, and sequencing 
methods can be found in Puritz et al. (2022).

2.5.2  |  Nucleotide variant calling

Raw sequencing reads were processed with a modified version of 
the ddocent pipeline (Puritz et al., 2014). First, reads were trimmed 
for low- quality bases and adapter sequences using the program fastp 
(Chen et al., 2018). Trimmed reads were mapped to both genome 
versions using bwa (Li & Durbin, 2010) with mismatch and gap- 
opening parameters (- B 3 - O 5). Picard (Broad Institute, 2016) was 
used to mark duplicate reads, and subsequent BAM files were fil-
tered with samtools (Li et al., 2009) to remove low- quality mappings, 
secondary alignments, and PCR duplicates. The program freebayes 
(Erik Garrison & Marth, 2012) was used to genotype small nucleotide 
variants (SNPs, InDels, small complex events).

bcftools (Danecek et al., 2021) and vcftools (Danecek et al., 2011) 
were used in combination to filter raw variants. Variants were fil-
tered based on allelic balance at heterozygous loci (between 0.1 and 
0.9) and quality to depth ratio of greater than 0.1. Variants were then 
filtered based on mean- depth, excluding all loci above the 95th per-
centile. Vcflib (Garrison, 2016) was then used to decompose variants 
into SNPs and InDels. Lastly, SNPs were filtered to allow for no miss-
ing data and only biallelic SNPs, and then variants were separated 
into two sets, one with a minor allele frequency (MAF) of 1% and the 
another with a MAF of 5%.

2.5.3  |  Structural variant calling

We used the program delly (Rausch et al., 2012) following the 
“germline sv calling” (https://github.com/delly tools/ delly #germl 
ine- sv- calling) pipeline to identify candidate structural variants 
(SVs), including deletions, insertions, duplications, and inversions. 
SVs were filtered using delly with the “germline” filter. BCFtools 
(Danecek et al., 2021) was used to convert inversion SVs to a bed file 
and then switch “LowQual” genotypes to missing, and SVs were fil-
tered to a subset with no missing data. Using this filtered SV subset, 
read- based copy number (VCF Format ID = RDCN) for insertions, 
deletions, and duplications was extracted to a tab delimited list for 
both genome versions.

2.5.4  |  Identification of newly diplotig regions in 
haplotig- masked genome

When a haplotig is effectively masked, the remaining haplotig should 
become a diplotig. We identified these regions to see if changes in 
population inference were more pronounced in these regions rela-
tive to the rest of the genome. BEDTools (Quinlan & Hall, 2010) was 
then used to calculate the average coverage over 10 kb windows 
across both genome versions. New diplotig regions were identified 
as any 10 kb window that increased in coverage in the haplotig- 
masked genome by greater than 1.5 times the coverage in the origi-
nal genome version.

2.5.5  |  Nucleotide diversity

Nucleotide diversity (π) was calculated across 10 kb windows of both 
genomes using vcftools (Danecek et al., 2011) with the SNP dataset 
with greater than 1% minor allele frequency. Differences between 
the original and haplotig- masked nucleotide diversity estimates 
were tested using a t- test. π was visualized across genomic windows 
for both genome versions, as was the difference between the two 
estimates. Differences between estimates from the two genome 
versions were also visualized and tested across new diplotig regions.

2.5.6  |  Heterozygosity

Vcflib (Garrison, 2016) was used to calculate per- site values of SNP 
heterozygosity for the SNP dataset with only biallelic SNP with 
greater than 1% minor allele frequency. Per- site values were aver-
aged across 10 kb windows using the program bedtools (Quinlan & 
Hall, 2010) for both versions of the genome. Differences between 
original and haplotig- masked heterozygosity estimates were tested 
and visualized in the same way as nucleotide diversity, across the 
whole genome and only in new diplotig regions.

2.5.7  |  Global FST and outlier detection

The program outflank (Whitlock & Lotterhos, 2015) was used to calcu-
late global FST for biallelic SNPs with a minor allele frequency greater 
than 5%. Outliers were inferred relative to a null FST distribution based 
on trimmed SNP datasets with heterozygosity greater than 0.1 and 
using a random set of 50,000 independent SNPs derived from snp_au-
toSVD in bigsnpr (Privé et al., 2018) using the settings (min.mac = 7, 
size = 10). OutFLANK calculated q- values for outlier scores for all SNP 
loci with heterozygosity above 0.1. A false discovery rate of 0.05 was 
used to designate significance based on q- values.

The full set of oyster individuals was found to have significant 
population structure between the Gulf of Mexico and Atlantic wild 
populations, as well as among selected lines and wild populations 
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(pairwise FST ~ 0.1– 0.5; Puritz et al., 2022). To examine patterns 
in FST in a lower structure dataset (pairwise FST ~ 0.01- ; Puritz 
et al., 2022), populations were subset to wild populations only from 
the Atlantic coast of the USA (LSS –  6 populations, 36 individuals). 
For the LSS, snp_autoSVD was run with the settings (min.mac = 4, 
size = 10) to account for the smaller number of individuals, but 
OutFLANK run options remained the same. Differences between 
the original and haplotig- masked FST values were tested using 
a t- test across both the full data and the LSS subset. FST values 
were also visualized as Manhattan plots for the original genome, 
the haplotig- masked genome, and the difference between the es-
timates. For visualization, FST values were averaged across 10 kbp 
windows. If a single outlier SNP was detected in a 10 kb window, 
the entire window was visualized as an outlier. Lastly, FST values 
were also tested for differences and examined across new diplotig 
regions in all datasets.

2.5.8  |  Copy number differentiation

Copy number variants (CNVs) were filtered for a minor allele fre-
quency greater than 5%. Differentiation at CNVs was calculated 
using the VST statistic (Redon et al., 2006) as implemented in 
Steenwyk et al. (2016) and plotted across the genome. The differ-
ence in VST values produced from the different genome versions 
across various data subsets was tested using a t- test and visualized 
across chromosomes in Manhattan plots similar to FST values.

3  |  RESULTS

3.1  |  Original assembly

3.1.1  |  Sequenced individual

The individual sequenced was from a family produced by gynogen-
esis of an already inbred female oyster. Genotyping with a panel of 
11– 15 microsatellite loci showed that this family experienced an ap-
proximately 55.4% reduction in the heterozygosity compared with 
their parents. The average heterozygosity in the gynogenetic prog-
eny was 0.115, compared with 0.642 in wild Delaware Bay oysters 
(Table S1).

3.1.2  |  Sequencing and assembly

We sequenced and assembled a reference genome for the eastern 
oyster using high- coverage paired- end libraries. We sequenced 
11,116,776 PacBio reads (122.7 GB) resulting in 87× coverage. We 
also sequenced 138,800,932 paired- end Illumina reads that were 
used for polishing (and later genome assessment). We also gener-
ated over 690 million paired- end reads for RNA transcript assem-
bly and assembly annotation. All sequencing reads used for the 

assembly and curation can be found on NCBI with accession num-
bers found in Table S2.

Our initial contig assembly of 819 Mb was much larger than the 
genome size of 578 Mb estimated by flow cytometry (Guo Lab, un-
published), and the Pacific oyster, Crassostrea gigas, assemblies of 
647 and 586 Mb. This led us to utilize a strategy of genome self- 
alignment and duplicative transcript mapping that identified 135 Mb 
of heterozygous loci to remove. In the first assembly of the Pacific 
oyster, polymorphic assembled loci were also removed in a similar 
way (Zhang et al., 2012). Our final assembly consisted of 684 Mb 
in 669 contigs of N50 contig and scaffold length 1.97 and 54 Mb 
respectively (Table 1). Most sequences (>99%) were scaffolded into 
the known number of 10 chromosomes using HiC and genetic link-
age mapping data. The eastern oyster assembly represents a high 
level of contiguity (Table 2; Table S3).

3.2  |  Original assembly curation

Gene annotation using the automated NCBI pipeline predicted the 
presence of 34,596 protein coding genes and 4230 non- coding 
(Table S4). When contrasted to the Pacific oyster genome (Peñaloza 
et al., 2021), we found a high percentage (36%– 40% total inter-
spersed) of repetitive elements with two independent methods 
(Table S5). From assembled transcripts aligned to our eastern oys-
ter assembly, we found 87% of 171,712 transcripts at a 95% length 
cutoff. We estimate 22% of the repeats could not be assigned a 
classification suggesting additional work is needed to define the 
composition of oyster sequence repeats. The assembly annotation 
can be found on NCBI (GCF_002022775.2).

Five of the assembled chromosomes (1, 2, 3, 4, and 8) were 
correctly aligned with linkage groups (LGs) of the genetic map in-
dicating that they were correctly assembled (Tables S6 and S7). 
Three chromosomes (5, 6, and 9) were aligned to more than one 
LG at different regions, suggesting that they represent misassem-
bled chromosomes. Two chromosomes (7 and 10) corresponded 
to parts of LGs, indicating that they are chromosomal fragments. 
There were some minor discrepancies between the assembly and 
genetic map that need to be resolved with additional data. The 
assembled genome size of 684 Mb was 18.3% longer than the 
genome size of 578 Mb estimated by flow cytometry (Guo Lab, 
unpublished), suggesting that the assembly still contains some 
allelic redundancy. One of the regions is a 1.1- Mb segment that 
appeared twice on Chr 1 (47,598,449– 48,729,575 and 49,357,009– 
50,465,997). The duplicated segments had identical gene content 
and gene order. Duplicated gene pairs in the two segments had 
identical exon– intron structures and 98%– 100% similarity in cod-
ing sequences but varied greatly in intron sizes. The duplicated 
gene pairs included two copies of alternative oxidase, a single- copy 
gene in most invertebrates, which were 98% identical in coding se-
quence but differed greatly in intron sizes, and PCR amplification 
of intron 6 indicated that the two copies were allelic haplotigs and 
not true paralogous duplications (data not shown).
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3.3  |  Haplotig detection and masking

Breaking up chimeric contigs based on sequencing coverage re-
sulted in 1852 contigs (from the original 669) with an N50 of 
885,077 bp. The program purge haplotigs (Roach et al., 2018) iden-
tified 963 haplotigs (partial and whole contigs). This resulted in 
1171 primary contigs (non- haplotigs) totalling 578,183,332 bp with 
an N50 of 9,802,061. To retain compatibility with past studies and 
chromosome- level scaffolding, haplotigs were masked from the 
original assembly by substituting “Ns” for haplotig bases. The final 
haplotig- masked genome contained the same 684,741,128 bp of 
the original assembly with 100,438,362 bp masked and is archived 
at https://doi.org/10.5281/zenodo.7799622. Assessed initially 
using the original Illumina sequencing reads from the assembly, the 
masked version of the genome had a higher overall mean coverage 
(50.615×) compared to the original assembly (45.6445×) with a pro-
nounced shift in 10 kb intervals with an approximate diploid cover-
age peak (~65×) relative to intervals with haploid levels (~32.5×) of 

coverage (Figure 1). Looking at total read mappings, multi- mapping 
reads, and filtered read mappings across the 10 kb chromosomal in-
tervals, masked intervals showed a clear dip in coverage relative to 
diplotig regions in the original genome while in the masked version 
of the genome shows increased total and filtered read mappings in 
several regions (new diplotigs) while also decreasing overall rates of 
multi- mapping reads (Figure S1).

3.4  |  Haplotig masking increases read 
mappings and duplicate detections

We generated over 3,558,207,970 read pairs for the resequencing 
portion of this project with an average of 39,535,644 ± 1,018,131 
read pairs per sample. On average, 97.14% ± 2.49% of reads were 
retained after quality trimming and adapter removal. On average 
of 96.75% ± 2.48%, trimmed reads mapped to the original genome, 
compared with 97.01% ± 2.49% to the haplotig- masked genome. 
For the original genome, 6.5% ± 0.17% of mappings were marked as 
duplicates with 6.6% ± 0.17% marked as duplicates for the haplotig- 
masked genome. Per sample statistics for sequencing, read mapping, 
and percent of the genome covered can be found in Table S8.

3.5  |  Completeness of genome

Even though masking haplotigs removed over 100,000,000 bases 
from the original assembly, there was minimal impact on assem-
bly completeness evaluated by busco (Seppey et al., 2019; Simão 
et al., 2015). The original genome assembly had 5158 complete 
(4413 single copy, 745 duplicated), 34 fragmented, and 103 missing 
orthologs from the Mollusca- specific BUSCO database. In contrast, 
the haplotig- masked assembly version had 5146 complete (5034 sin-
gle copy, 112 duplicated), 39 fragmented, and 110 missing orthologs 
(Figure S2). BUSCO assignment can be dependent on contig length, 
so BUSCO scores were also compared from non- scaffolded contigs. 
The original contigs had 5156 complete (4184 single copy, 972 dupli-
cated), 34 fragmented, and 105 missing orthologs, while the primary 
contigs (non- haplotigs) had 5138 complete (5003 single copy, 135 
duplicated), 44 fragmented, and 113 missing orthologs. Using the 
Pacific Oyster, C. gigas, for comparison, the Qi et al. (2021) assem-
bly had 5031 complete (4836 single copy, 195 duplicated), 21 frag-
mented, and 243 missing orthologs and the Peñaloza et al. (2021) 
assembly had 5198 complete (5086 single copy, 112 duplicated), 26 
fragmented, and 71 missing orthologs (Figure S3).

3.6  |  Haplotig contigs in assemblies reduce 
SNP discovery

Masking haplotigs increased the number of SNPs genotyped across 
all levels of filtering (Table 3). For the original assembly, 7,674,518 
(3,580,098; MAF 5%) biallelic SNPs were kept after filtering compared 

TA B L E  1  Assembly statistics.

Scaffolds

Count 358

Length 685,793,667 bp

Avg 1,915,624 bp

N50 2,791,541 (2,791,483) 2,738,754 bp

Largest 12,680,670 bp (ID: LG2_scaffold1_
size12680670, BASES_ONLY_
LENGTH: 12,679,178)

Scaffold size distribution Number (average length)

Scaffolds >1 M 232 (613,681,101 bp)

Scaffolds 250 K– 1 M 111 (69,888,768 bp)

Scaffolds 100 K– 250 K 12 (2,060,638 bp)

Scaffolds 10 K– 100 K 3 (163,160 bp)

Scaffolds 5 K– 10 K 0 (0 bp)

Scaffolds 2 K– 5 K 0 (0 bp)

Scaffolds 0– 2 K 0 (0 bp)

Contigs

Count 670

Length 684,663,495

Avg 1,021,885

N50 1,975,305 (1,971,208) 1,921,126

Largest  9,802,061

Contig size distribution Number (average length)

Contigs >1 M 238 (522,420,151 bp)

Contigs 250 K– 1 M 243 (145,713,162 bp)

Contigs 100 K– 250 K 72 (12,359,820 bp)

Contigs 10 K– 100 K 94 (4,065,194 bp)

Contigs 5 K– 10 K 11 (71,898 bp)

Contigs 2 K– 5 K 9 (29,295 bp)

Contigs 0– 2 K 3 (3975 bp)

https://doi.org/10.5281/zenodo.7799622
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to 12,149,052 (5,574,080; MAF 5%) for the haplotig- masked assembly. 
SNPs included in this 36.83% increase were found in representative 
proportions of genomic annotations (18.61% exonic, 53.54% intronic, 
27.85% intergenic) with relatively even increases across categories 
(38.69% exonic, 35.74% intronic, 36.97% intergenic). The largest dif-
ferences were in regions that switched from haploid to diploid cover-
age (new diplotigs) after masking (Figure 2). In new diplotigs (looking 
at all SNPs with a MAF >0.01), the original assembly produced only 
95,667 SNPs after filtering compared to 3,381,377 SNPs in the same 
regions of the haplotig- masked assembly with 3,306,188 (97.78%) ex-
clusive only to the haplotig- masked genome. There were also 175,128 
SNPs that were no longer present in the haplotig- masked genome 
with 98,589 of those SNPs found inside of haplotigs and 20,478 found 

inside new diplotigs. Out of the 8,735,612 SNPs that were called within 
both genome versions, genotypes had a mean 99.62% concordance 
rate, and this rate was lower in new diplotigs (98.97%) vs other regions 
of the genome (99.97%). Along with the number of SNPs genotyped, 
masking haplotigs had significant effects on the levels of inferred nu-
cleotide diversity, heterozygosity, and FST values across the genome.

3.7  |  The presence of haplotigs greatly reduces the 
estimates of nucleotide diversity

Across all calculated measures of genomic diversity and structure, 
nucleotide diversity (π) was significantly and drastically affected 
by the presence of haplotigs in the genome assembly (Figures 2 
and 3). For comparison, values of π were averaged across 10 kb 
windows, and for the original assembly, the genome- wide aver-
age was 0.00382 ± 1.93 × 10−5 compared to haplotig- masked 
0.00587 ± 2.20 × 10−5, and these two values differed significantly 
when evaluated with a t- test (t = 70.2; df = 74,574, p = 0). When individ-
ual window values are visualized across the whole genome (Figure 3) 
or across single chromosomes (Figure 2), clear drops in diversity line 
up with identified haplotig regions. There was also a clear increase in 
estimates of diversity in new diplotigs (Figure 4). Compared across 
new diplotigs only, the difference in nucleotide diversity was over an 
order of magnitude, with the original assembly average calculated to 
be 0.000321 ± 7.6772 × 10−6 compared to 0.00720 ± 4.68 × 10−5 for 
the haplotig- masked assembly. This difference was also significant 
when evaluated with a one- sided t- test (t = 145; df = 7794, p = 0).

F I G U R E  1  Histogram of read coverage across both genome versions. Paired- end Illumina reads used for polishing the original genome 
assembly were mapped back to the two genome versions. Filtered read coverage was averaged across 10 kb windows and plotted as a 
histogram with bins coloured by genome: grey for the original and orange for the haplotig- masked genome.

TA B L E  3  SNP results.

Filtering level
Original 
genome

Haplotig- masked 
genome

Initial bioinformatic filtering 45,427,924 52,971,541

No missing data, MAF > 0.01 8,910,740 14,103,332

No missing data, MAF > 0.01, 
2 alleles

7,674,518 12,149,052

No missing data, MAF > 0.05 4,299,397 6,699,719

No missing data, MAF > 0.05, 
2 alleles

3,580,098 5,574,080

Low structure subset

No missing data, MAF >0.05, 
2 alleles

2,872,577 4,482,328
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F I G U R E  2  Comparison of coverage, SNPs, FST, heterozygosity, and nucleotide diversity across original and haplotig- masked assembly. 
Across both assemblies, coverage, the number of SNPs, FST, heterozygosity, and nucleotide diversity were averaged across 10 kb windows 
of Chromosome 2 (NC_03578.1). For coverage (Panel a), counts of SNPs (Panel b), FST (Panel c), heterozygosity (Panel d), and nucleotide 
diversity (Panel e), points are the values per 10 kb window with lines drawn as rolling three- point averages, and the counts of SNPs is plotted 
as an area plot. Areas along the chromosome shaded in grey were identified as haplotigs and therefore have no data for the haplotig- masked 
genome. Areas shaded in yellow are non- masked regions that showed a shift from haploid to diploid coverage levels after haplotig masking. 
For all plots, blue is the original genome and purple is the haplotig- masked genome.

F I G U R E  3  Comparison of nucleotide diversity across the original and haplotig- masked assembly. Panel (a) is values of π averaged across 
10 kb windows across the original genome. Panel (b) is values of π averaged across 10 kb windows across the haplotig- masked genome. Panel 
(c) is the difference between the original and the haplotig- masked values in 10 kb windows across the entire genome. Panel (d) is a violin and 
boxplot of 10 kb averaged values between the two genome versions. For all plots, blue is the original genome and purple is the haplotig- 
masked genome.



    |  11PURITZ et al.

3.8  |  Masking haplotigs increases estimates of 
heterozygosity

The presence of haplotigs in the genome assembly had a more sub-
tle, but statistically significant, effect on measures of heterozygosity 
compared to nucleotide diversity (Figure 2; Figure S4). When calcu-
lated over 10 kb windows, the mean heterozygosity of the haplotig- 
masked genome was 0.140 ± 0.00249 compared to 0.136 ± 0.00028 
for the original genome assembly. This small difference was statis-
tically significant (t = 10.5; df = 74,517; p < 2.74 × 10−26; one- sided 
t- test). The distribution of heterozygosity differences between ge-
nome assemblies showed the greatest difference in new diplotigs 
(Figure S5). Mean heterozygosity for new diplotigs was significantly 
higher (t = 18.1; df = 5980; p < 7.36 × 10−72; one- sided t- test) in the 
haplotig- masked assembly (0.142 ± 0.00046) and had a lower vari-
ance compared to the original assembly (0.121 ± 0.00102; Figure S5).

3.9  |  Haplotig masking improves the accuracy of  
estimates of population structure and outlier  
detection

Overall, the distribution of FST values was similar across the two 
genome versions, with the original assembly having a genome wide 
average of 0.124 ± 0.000667 compared to the haplotig- masked 

genome- wide average of 0.120 ± 0.000521. This subtle difference 
was, however, significantly different when evaluated with a one- 
sided t- test (t = −49.2; df = 6,995,427; p = .000). Estimates of FST from 
the original genome also showed a greater variance than the esti-
mates from the haplotig- masked genome, but in contrast to other 
population genetic statistics, the distribution of FST differences be-
tween genome assemblies did not show the greatest difference in 
new diplotigs (Figure 5; Figure S6). The original genome had a mean 
FST estimate of 0.106 ± 0.00598 similar to the haplotig- masked ge-
nome estimate of 0.109 ± 9.7 × 10−5. However, this difference was 
still statistically significant (one- sided t- test; t = 4.81; df = 34,218; 
p < 7.71 × 10−7).

The low structure subset (LSS) showed similar patterns of FST 
values and differences between the two genomes with the origi-
nal assembly having an average FST of 0.0278 ± 4.8 × 10−5 and the 
haplotig- masked genome having an average FST of 0.0257 ± 3.7 × 10−5 
(Figure 6). This difference was also significant (one- sided t- test; 
t = −35.6; df = 5,980,814; p < 7.55 × 10−278). Again, while variance in 
estimates was higher in new diplotig regions, the difference in means 
was less pronounced (Figure S7; original = 0.0181 ± 0.000427; 
haplotig- masked = 0.0191 ± 6.78 × 10−5) and was not significantly 
different (one- sided t- test; t = 0.779; df = 29,282; p = .218).

Masking haplotigs had a larger effect on outlier loci detection, in-
creasing the number of outliers detected by about 5%. Using a false 
discovery rate of 5%, OutFLANK detected 158,057 outliers (4.4% 

F I G U R E  4  Comparison of nucleotide diversity across the original and haplotig- masked assembly in newly diplotig regions. Panel (a) is 
values of π averaged across 10 kb windows in the original genome that changed to diploid coverage levels after haplotig masking. Panel (b) is 
values of π averaged across in the same 10 kb new diplotig windows across the haplotig- masked genome. Panel (c) is the difference between 
the original and the haplotig- masked values in 10 kb windows across the entire genome with dot size directly related to the distance from 
zero. Panel (d) is a boxplot of 10 kb averaged values between the two genome versions. For all plots, blue is the original genome and purple 
is the haplotig- masked genome.
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of all loci) from data using the original genome assembly contrasted 
to 257,823 (4.6%) outliers detected from data using the haplotig- 
masked genome; 2032 (1.28%) of the outliers detected with the orig-
inal genome were not called SNPs in the haplotig- masked genome, 
with 1249 falling within masked haplotigs. There were an additional 
234 (0.15%) outliers from the original genome that were no longer 
significant in the haplotig- masked genome. Restricting the outlier 
detection to the LSS, the number of total outliers detected using the 
original genome was 27,721 (0.96% of all loci) and 38,712 (0.86%) 
using the haplotig- masked genome. The number of outliers from the 
original genome that were not present in the masked genome was 
260 (0.94%) with 122 (0.44%) loci that were present in the masked 
haplotigs. Fifty- eight (0.21%) outlier loci from the original genome 
were no longer significant in the masked genome.

3.10  |  Haplotigs reduce the number of detected 
structural variants

After filtering, the program delly detected 247,347 different struc-
tural variants (SVs) in the original genome compared to 279,390 SVs 
in the haplotig- masked genome. The haplotig- masked genome had 

more detections across all categories (Table 4). While the original ge-
nome did have less variants detected, the average length was longer 
for every category of variant (Table 4). When SVs were restricted to 
only those with no missing data across all individuals, more variants 
were still detected using the haplotig- masked genome; however, 
the mean sizes of each variant were either longer for the haplotig- 
masked genome or nearly identical with variants detected using the 
original genome (Table S9).

3.11  |  Haplotigs may not affect the estimates of 
population frequency of copy number

Delly was also used to call copy number from all samples, and copy 
number was used to calculate the statistical VST across both ge-
nomes. Global estimates of VST were low for both genome versions 
(original-  0.0678 ± 0.00105; haplotig- masked-  0.0663 ± 0.000916), 
and they did not differ significantly (two- sided t- test; t = −1.10; 
df = 30,789; p = .864). Looking at averages across 10 kb windows, 
there was no clear pattern of differentiation between genome 
versions (Figure S8). The difference was similar when individu-
als were restricted to the LSS with the original genome version 

F I G U R E  5  Comparison of estimates of FST across the original and haplotig- masked genomes. Panel (a) is values of FST averaged across 
10 kb windows in the original genome. Windows that contained any outlier SNP loci were changed to triangles (16,864 windows). Panel 
(b) is values of FST averaged across 10 kb windows across the haplotig- masked genome. Windows that contained any outlier SNP loci were 
changed to triangles (22,182 windows). There were 39 windows with SNPs that were identified as outliers in the original genome analysis 
but not in the haplotig- masked analysis, and these windows are marked as upside- down blue triangles. Panel (c) is the difference between 
the original and the haplotig- masked values in 10 kb windows across the entire genome with dot size directly related to the distance from 
zero. There were 39 windows with SNPs that were identified as outliers in the original genome analysis but not in the haplotig- masked 
analysis, and these windows are marked as upside- down blue triangles. Panel (d) is a violin and boxplot of 10 kb averaged values between the 
two genome versions. For all plots, blue is the original genome and purple is the haplotig- masked genome.
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having a global mean estimate of 0.0131 ± 0.00084 compared to 
the estimate of 0.0122 ± 0.00074. This difference was also not 
statistically significant (two- sided t- test; t = −0.83; df = 27,291; 
p = .406). Looking across the 10 kb windows, the differences be-
tween estimates appear to be randomly distributed around zero 
(Figure S9).

4  |  DISCUSSION

Here, we assembled an annotated, chromosome- level genome for 
the eastern oyster (Crassostrea virginica). The original reference ge-
nome, publicly released in 2017, represents one of the most com-
plete and contiguous genomes for a marine invertebrate species. 

F I G U R E  6  Comparison of estimates of FST from the low structure subset (LSS) across the original and haplotig- masked genomes. 
Estimates of FST were calculated using the low structure subset (LSS) to examine how haplotigs affect population structure inference in a 
lower signal system. Panel (a) is values of FST averaged across 10 kb windows in the original genome. Windows that contained any outlier 
SNP loci were changed to triangles (4993 windows). Panel (b) is values of FST averaged across 10 kb windows in the haplotig- masked genome. 
Windows that contained any outlier SNP loci were changed to triangles (3825 windows). There were 31 windows with SNPs that were 
identified as outliers in the original genome analysis but not in the haplotig- masked analysis, and these windows are marked as upside- down 
blue triangles. Panel (c) is the difference between the original and the haplotig- masked values in 10 kb windows across the entire genome 
with dot size directly related to the distance from zero. There were 31 windows with SNPs that were identified as outliers in the original 
genome analysis but not in the haplotig- masked analysis, and these windows are marked as upside- down blue triangles. Panel (d) is a violin 
and boxplot of 10 kb averaged values between the two genome versions. For all plots, blue is the original genome and purple is the haplotig- 
masked genome.

TA B L E  4  All structural variants detected.

Type Number detected Mean length S.E. length

Haplotig- masked Translocation 33,012 NA NA

Deletion 216,912 823 22

Duplication 15,347 14,784 464

Insertion 7310 28 0

Inversion 6808 118,478 2857

Original Translocation 27,838 NA NA

Deletion 192,011 796 21

Duplication 13,155 17,358 585

Insertion 6351 28 0

Inversion 7992 243,679 3489
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We also present an adpost hoc method for detecting and masking 
haplotig sequences in an already published genome that improves 
coverage and decreases duplicated orthologs while having only 
nominal impacts on genome completeness. Our results show that 
masking haplotigs in the eastern oyster genome drastically improved 
SNP and structural variant discovery. Our results also demonstrate 
that haplotigs affected population genomic analyses and that mask-
ing haplotigs improved many commonly used population statistics. 
Taken together, we provide the original assembly and a haplotig- 
masked genome assembly that will be foundational resources for 
insights into molluscan adaptation to a changing environment and a 
valuable resource for the aquaculture industry.

4.1  |  A chromosome- level genome for an 
important ecosystem engineer and aquaculture and 
fisheries species

The eastern oyster genome represents a similar level of contigu-
ity and completeness compared to the Pacific oyster (Table S3; 
Figure S3) and several other published molluscan genomes 
(Table 2). More broadly, most whole- genome assemblies currently 
available for non- model marine species are fragmented and incom-
plete (Du et al., 2017; Gerdol et al., 2020; Powell et al., 2018). The 
C. gigas genome was first published in 2012 (Zhang et al., 2012) 
with updates published by two separate groups in 2021 (Peñaloza 
et al., 2021; Qi et al., 2021). The two updated C. gigas assemblies are 
now chromosome- level along with the eastern oyster genome. The 
eastern oyster assembly is more complete than the Qi et al. (2021) 
C. gigas assembly and is comparable to the Peñaloza et al. (2021) C. 
gigas assembly, despite the primary assembly being done several 
years prior. The haplotig- masked version for C. virginica has less 
duplicates than the Qi et al. (2021) C. gigas assembly and nearly 
the same level of duplication as the Peñaloza et al. (2021) C. gigas 
assembly, even though haplotigs were masked post hoc. The two 
species have similar numbers of protein coding genes detected, 
though the higher number for C. virginica may have been influenced 
by the haplotigs present in the original assembly. A shortcoming of 
the eastern oyster assembly is the mis- assembly of several chro-
mosomal fragments as revealed by the linkage map, which can be 
corrected in a future assembly. In short, the original eastern oyster 
genome assembly represents a significant advancement for mol-
luscan and marine invertebrate genomics in its completeness, and 
the post hoc haplotig masking represents a novel way to reduce 
haplotig sequence without sacrificing genome completeness.

4.2  |  A method for post hoc improvement of 
existing genomic resources

A genome assembly represents an advance in knowledge for any 
one species as well as a powerful tool for a wide variety of scientific 
studies. A caveat to a published assembly, or assembly version, is 

that it represents a single snapshot of a resource that can continually 
improve over time with both technological improvements and the 
acquisition of additional high- quality data. Assembly improvements, 
however, take time, take computational and financial resources, and 
do not always proceed continuously over time or by the same group 
of researchers. In this study, we have presented a simple methodol-
ogy for improving existing genome assemblies by masking haplotigs. 
Looking only at the data generated from the single- sequenced ge-
nome individual, haplotig masking greatly improved genome cover-
age, reducing the number of windows at “haplotig” coverage levels 
and increasing the windows at “diplotig” coverage levels. Examining 
read coverage across an exemplar chromosome, areas outside of 
masked haplotigs that were previously at “haplotig coverage” lev-
els shifted clearly to “diplotig coverage levels.” Most importantly, 
even though haplotig masking effectively removed over 100 mb of 
data, it did not affect genome completeness. The haplotig- masked 
genome was 99.8% as complete as the original genome but had 85% 
less duplications (as estimated by BUSCO analysis).

We suspect that the weak point of our method is the breakup of 
chimeric contigs. The sliding window approach used for this anal-
ysis was a simple and successful approach but could be improved 
by a more sophisticated analysis examining fine scale patterns of 
coverage changes statistically, or even incorporating original contig 
assembly graphs. We also exclusively relied on the program purge 
haplotigs (Roach et al., 2018), and there are new methods and pro-
grams, such as hapsolo (Solares et al., 2021), that may be able to offer 
improvements to our implementation as well.

4.3  |  Haplotigs impact population genomic  
analyses

An accurate reference genome can enhance our understand-
ing of genome structure, mechanisms promoting genetic diversity 
and population differentiation, and the genetic basis for complex 
traits, and allow for the investigation of natural and anthropo-
genic selection (Ekblom & Galindo, 2010; Ellegren, 2014; Fonseca 
et al., 2016), but mis- assemblies, especially false duplications arising 
from heterozygosity, can negatively impact SNP discovery (Kelley & 
Salzberg, 2010; Roach et al., 2018; Solares et al., 2021). We found 
that the presence of haplotigs in our original assembly greatly im-
pacted SNP discovery, structural variant detection, and significantly 
all the population genomic statistics that we calculated, including 
nucleotide diversity, observed heterozygosity, FST, and VST. The most 
striking differences were in SNP discovery, where across different 
data subsets and filtering criteria, the haplotig- masked genome had 
between 55% and 58% more SNPs than the original genome in our 
resequencing data when any missing data filters were applied, and 
these differences were most prominent in regions that had cover-
age increased to diplotig levels after masking. This fits with first- 
principal expectations that loss of coverage of one allele could lead 
to a true SNP being mistakenly called an invariant portion of the 
genome. Interestingly, there was also a small percentage of SNPs 
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(2.28% of all SNPs) that were called in the original genome but not 
the haplotig masked. The vast majority were inside haplotigs that 
were masked, but there were some (20,478; 0.27%) that were in new 
diplotig regions, indicating that haplotigs do lead to false- positive 
SNPs in one or both allelic copies.

Though discovery was vastly different, SNPs that were geno-
typed in both genome versions had very high concordance in ge-
notyping (99.62%), though slightly lower in new diplotig regions 
(98.97%). The high concordance in shared loci lends confidence to 
any previous results from genomes with potentially small percent-
ages of haplotigs. However, it should be noted that our results are 
for genotyped SNPs with moderate (10×– 20×) coverage levels per 
individual and that haplotigs could potentially have a larger effect 
on low- coverage whole- genome sequencing studies that rely on less 
coverage per individual and genotype likelihoods instead of geno-
types (Lou et al., 2021; Lou & Therkildsen, 2022; Matz, 2017).

Perhaps, the most important implication of our results is that 
haplotigs have a large and significant effect on estimates of nucle-
otide diversity. Estimates of nucleotide diversity were over 50% 
higher in the haplotig- masked genome, and this is likely directly at-
tributable to the 55% increase in SNP discovery. This is because the 
more SNPs within a 10 kb window, the more likely it is to draw two 
different haplotypes. The effect of haplotig masking on nucleotide 
diversity was most prevalent in new diplotig regions, which in the 
original genome had estimates of π of close to zero because of a lack 
of SNPs. For researchers using genomic tools to assess genetic di-
versity, whether in a conservation application (Benestan et al., 2016) 
or a fisheries application (Benestan, 2020) of high heterozygosity 
species, haplotig masking of existing genomic resources should be a 
critical step before population- level assessment.

In contrast to nucleotide diversity, our results suggest that hap-
lotigs have only a minor impact on overall estimates of heterozygosity. 
The haplotig- masked genome did have significantly higher estimates 
of heterozygosity than the original genome, but the difference was ap-
proximately 3% across the whole genome and 17.5% in new diplotig 
regions. The subtle difference is likely due to the high concordance 
of shared genotypes between the two genome versions, as observed 
heterozygosity is simply a proportion of variable loci that are heterozy-
gous and not greatly affected by differences in SNP discovery.

The results from our population structure and outlier detection 
analyses were more nuanced. Estimates of global FST were 3.33% 
larger, on average, estimated from the original genome version com-
pared to the haplotig- masked genome using the full data set; however, 
there was a much larger difference in estimates when using the lower 
structure subset with the original genome having estimates that were 
8.2% larger on average than the haplotig- masked genome. Not only 
did haplotigs inflate estimates of FST, but they also increased the vari-
ance of those estimates; the original genome estimates had a standard 
error 28% higher than the haplotig- masked genome in the full data-
set and 29% in the LSS. The increase in variance had implications for 
outlier detection. Of 158,057 outliers, 1483 that were significant in 
the full dataset analysis using the original genome were either not sig-
nificant or no longer present in the analysis with the haplotig- masked 

genome. For the lower structure subset, there were 180 outliers out 
of 27,721 that were missing or non- significant. The differences we 
observed were small but consistent, and there are some potential ca-
veats to our analysis. First, our per locality sample sizes were small 
(only six individuals per population), and this likely affected the power 
we had to detect small allele frequency differences. Second, our SNPs 
were genotyped at moderate coverage levels and highly filtered, tol-
erating no missing data. Missing data may potentially interact with 
haplotig effects to alter allele frequencies, but we did not test this in 
our study. Lastly, we only examined global population structure and 
pairwise estimates may have different patterns due to smaller sam-
ple sizes and potentially even smaller background levels of population 
structure. Taken all together, haplotigs have a small but consistent and 
significant effect on estimates of population structure, and there are 
still potential haplotig effects that remain unknown.

Understanding the role of structural variants in adaptation and 
population structure has taken a more prominent role in molec-
ular ecology (Bazzicalupo et al., 2020; Mérot et al., 2020; Nelson 
et al., 2019; Prunier et al., 2019; Wellenreuther et al., 2019). Our 
analysis indicates that while haplotigs do affect structural variant 
detection and discovery, haplotigs do not affect estimates of differ-
entiation based on copy number variation. We found that analysis 
with the haplotig- masked genome found more structural variants 
than the original genome, though all variants were smaller on aver-
age in the haplotig- masked genome. The differences in length did 
virtually disappear if the analysis was restricted to only variant calls 
without missing data. Estimates of VST were virtually identical be-
tween genome versions for the full data set, and there was a small 
but non- significant difference when using the lower structure sub-
set. We only used one programme to estimate both copy number 
variation and identify structural variants, and our analysis may have 
benefited from a stand- alone estimation of copy number variation. 
We also only had moderate levels of per sample coverage (10×– 20×), 
and this may have limited our power to detect differences in copy 
number variation between genome versions.

5  |  CONCLUSIONS

In this manuscript, we present a chromosome- level genome assem-
bly of the eastern oyster (Crassostrea virginica), and we describe a 
post hoc method for masking haplotig sequences, including chimeric 
contigs, within an existing assembly. We show that haplotig masking 
improves read mapping, genome coverage, and SNP discovery. The 
haplotig- masked genome greatly reduced duplicated orthologs, while 
still maintaining one of the highest levels of genome completeness and 
continuity for molluscan genomes. Resequencing data shows that hap-
lotig masking greatly improves estimates of nucleotide diversity and 
offers subtle but significant improvements to estimates of heterozy-
gosity population structure and outlier detection. The eastern oyster 
genome (original and haplotig masked) will help support both funda-
mental, applied, and conservation research on a critical ecosystem 
species and one of the largest aquaculture species in North America.
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